Arc segmentation in linear time

Thanh Phuong Nguyen and Isabelle Debled-Rennesson

Email: {nguentp,debled}@loria.fr

LORIA Nancy, Campus Scientifique - BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Contribution

We propose a linear algorithm based on discrete geometry approach for segmentation of a curve into digital arcs.

Motivation

– Arc and circle are basic object in discrete geometry.
– Arc and circle appear often in images.
– Shape contains often digital arcs.
⇒ The study of these primitives is important.

Discrete circle

– Basic object in discrete geometry.
– Based on discretization of a real circle.

Discrete line [Reveillès91]

A discrete line, noted as \(D(a, b, \mu, \omega) \), \(a, b, \mu, \omega \in \mathbb{Z}^2 \), is a set of points that verifies: \(\mu \leq ax - by \leq \mu + \omega \).

Blurred segment [Debled et al. 06]

A blurred segment \(\nu \) is a set of points that satisfies:

– There exist a discrete line \(D(a, b, \nu, \omega) \) that contains this set.

\(\max(|\nu_x|, |\nu_y|) \leq \nu \)

Tagent space [Latecki00]

Input:
Suppose that \(C = \{C_i\}_{i=0}^{n} \) is a polygonal curve
– \(\alpha_i = \angle(C_{i-1}C_iC_{i+1}) \)
– \(l_i \) the length of segment \(C_iC_{i+1} \).
– \(\alpha_i > 0 \) if \(C_{i+1} \) is on the right side of \(C_{i-1}C_i, \alpha_i < 0 \) otherwise.

Output:
We consider the transformation that associates \(C \) to a polygon of \(\mathbb{R}^2 \) constituted by segments \(T_\alpha T_{(i+1)} T_{(i+1)} T_{(i+1)2} \) for \(i \) from 0 to \(n-1 \) with

– \(T_{i0} = (0, 0) \)
– \(T_{i1} = (T_{i-1,2} x + l_{i-1}, T_{i-1,2} y), 1 \leq i \leq n \)
– \(T_{i2} = (T_{i,1} x + T_{i,1} y + \alpha_i), 1 \leq i \leq n-1 \).

Deciding if a curve is an arc

1. Polygonalize the input digital curve by polygon \(P \) based on recognition of BS of width 1.
2. Transform \(P \) to tangent space \(T(P) \) in the tangent space.
3. Determine the midpoint set \(MP C = \{M_i\}_{i=1}^{n+1} \) of horizontal segment of \(T(P) \).
4. Verify if \(MP C \) is a BS of width \(\epsilon \) [Debled 06]

Interest of proposition 1

Arc detection → Recognition of discrete line

Example:

Experimental results:

Study of quasi co-linear property

Convergence of radius of local circumcircles

Proposition 2:
Let \(C = \{C_i\}_{i=0}^{n} \) be a polygon, \(\alpha_i = \angle(C_{i-1}C_iC_{i+1}) \). The length of \(C_iC_{i+1} \) is \(l_i \), for \(i \in \{0, \ldots, n-1\} \). We denote \(O_j, R_j, H_j \) respectively the center and the radius of circumcircle that passes to 3 points \(C_{i-1}, C_i, C_{i+1} \), the projection of \(O_i \) on \(C_iC_{i+1} \), suppose that \(R_i - \delta H_i \leq h \) for \(i \in \{1, \ldots, n-1\} \). This results below is obtained.

\[R_i h \leq \frac{H_i}{\alpha_i} \leq R_i (\alpha_i - 0.33 \pi h) \].

Convergence of centers of local circumcircles

Proposition 2:
Let us consider a sequence of points \(\{C_i\}_{i=0}^{n} \). We denote \(O'_i \) (resp. \(O_i \)) and \(R'_i \) (resp. \(R_i \)) are the center and radius of circumcircle that passes to 3 points \(C_0 \) (resp. \(C_i \)), \(C_i, C_{i+1} \). There exist \(R, \delta \) such that \(R, \delta \leq \frac{R_i - \delta H_i}{2} \), for \(i = 1, \ldots, n-1 \). Suppose that \(\angle C_iC_{i+1}C_{i+2} > \frac{\pi}{2} \) for \(k \in \{0,1\}, k < n \). Therefore, we have this property \(0 \leq R'_i \leq R, \delta \leq \delta, 0 \leq H'_i \leq R_i - \delta \), for \(1 \leq i \leq n-1 \).

Arc in the tangent space

Proposition 1:
Let \(C = \{C_i\}_{i=0}^{n} \) be a polygon, \(\alpha_i = \angle(C_{i-1}C_iC_{i+1}) \). The length of \(C_iC_{i+1} \) is \(l_i \), for \(i \in \{0, \ldots, n-1\} \). The vertices of \(C \) are on a real arc of radius \(R \) with center \(O \), \(\angle COC_{i+1} \leq \frac{\pi}{2} \) for \(i \in \{1, \ldots, n-1\} \). This results below is obtained.

\[1 \leq R \leq \frac{\alpha_i}{l_{i+1}} \leq \frac{1}{0.9742979 R} \]

Arc segmentation

Main ideas:
1. Polygonalize the input curve
2. Transform the polygon to tangent space
3. Construct the curve of midpoints in the tangent space
4. Polygonalize the midpoint curve
– Utilize parameter \(\alpha \) to verify detected arcs.