Image Denoising with a Constrained Discrete Total Variation Scale Space
Igor Ciril, LMCS, Institut Polytechnique des Sciences Avancées (IPSA)
Jérôme Darbon, CNRS / CMLA, Ecole Normale Supérieure Cachan

Contribution
We consider a combinatorial approach that relies on coupling the TV-flow (which corresponds to the solution of a differential inclusion) that incrementally simplifies the original noisy image with a procedure that intends to recover the contrast.

Notations
- Markovian framework:
 - set of pixels: \(V \)
 - value of image \(u \) at site \(i \): \(u_i \)
- set of interactions: \(W \)
- Discrete Total Variation (DTV)
 \[J(u) = \sum_{(i,j) \in W} R_{i,j}(u) = \sum_{(i,j) \in W} |u_j - u_i| \]
- Sub-differential of \(F \) at \(x \)
 \[\partial F(x) = \{ s | \forall y, \langle y - x, s \rangle + F(x) \leq F(y) \} \]
- Minimal subgradient of \(F \) at \(x \)
 \[m(\partial F(x)) = \text{projection of } 0 \text{ onto } \partial F(x) \]

A coupled scale-space approach
Approach coupling two procedures
1. Procedure of simplification (denoising but loss of contrast) of the observed image: \(t \rightarrow u(t) \) solution of DTV-flow
2. Procedure that respects shapes and recovers the contrast: \(t \rightarrow \tilde{u}(t) \) is the image that is the closest to the observed image \(f \) having the same relative order as \(u(t) \). This corresponds to the projection of \(f \) onto the convex set:

\[\bigcap_{(i,j) \in W} \{ g \in \mathbb{R}^N | |g_j - g_i| + m_i(\partial R_{i,j}(u(t)))(g_j - g_i) = 0 \} \]

Results
(a) Original image
(b) Noisy image
(a) Our result
(b) Residual
(a) TV minimizer
(b) Residual

Relative Order Preservation
- We want to keep the relative order of the level lines
- This constraint is maintained through:
 - constraining relative order between two interacting pixels
 - using Bregman distances
 \[|u_j - u_i| + m_i(\partial R_{i,j}(u))(u_j - u_i) = 0 \]
 \(\Rightarrow \) Geometric information maintained as a variational form
- Need to select the minimal subgradient:
 - otherwise relative order not necessarily satisfied
 - required for convergence properties of the approach

Funding
Research of J. Darbon has been supported by US Office of Naval Research ONR N000140710810.