Some morphological operators on complex spaces

Fábio Dias Jean Cousty Laurent Najman

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI, ESIEE

April 6, 2011

diasf@esiee.fr
1. Introduction

2. Lattice of simplicial complexes

3. Morphological operators on simplicial complex spaces

4. Some results

5. Conclusion and future work
Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction
Lattice of simplicial complexes
Morphological operators on simplicial complex spaces
Some results
Conclusion and future work

(Binary) Images
Graphs and images

Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction
Lattice of simplicial complexes
Morphological operators on simplicial complex spaces
Some results
Conclusion and future work
Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction

Lattice of simplicial complexes

Morphological operators on simplicial complex spaces

Some results

Conclusion and future work

Simplicial complexes and images
Simplicial complexes and images
Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction

Lattice of simplicial complexes

Morphological operators on simplicial complex spaces

Some results

Conclusion and future work

Meshes
Lattice:

A *lattice* is a partially ordered set, that also have a least upper bound, called *supremum*, and a greatest lower bound, called *infimum*.

Example: the power set of \(\{a, b, c\} \):

- Supremum: union.
- Infimum: intersection.
Adjunctions

Two operators

\[\alpha : \mathcal{L}_2 \to \mathcal{L}_1 \] \hspace{1cm} (1)

\[\alpha^A : \mathcal{L}_1 \to \mathcal{L}_2 \] \hspace{1cm} (2)

form an adjunction \((\alpha^A, \alpha)\) if:

\[\alpha(a) \leq_1 b \iff a \leq_2 \alpha^A(b) \] \hspace{1cm} (3)

Property:

- \(\alpha\) is a dilation: commutes with the supremum.
- \(\alpha^A\) is an erosion: commutes with the infimum.
Filters

A *filter* is an operator $\beta : \mathcal{L} \rightarrow \mathcal{L}$ that is:

- **Increasing:** $X \subseteq Y \implies \beta(X) \subseteq \beta(Y)$
- **Idempotent:** $\beta(\beta(X)) = \beta(X)$.

Closing $\phi : \mathcal{L} \rightarrow \mathcal{L}$

Extensive: $X \subseteq \phi(X)$

Opening $\gamma : \mathcal{L} \rightarrow \mathcal{L}$

Anti-extensive: $\gamma(X) \subseteq X$
Granulometry

Granulometric property:

\[\forall d_1, d_2 \in \mathbb{N}, \text{ if } d_1 \leq d_2:\]
- \[\gamma_{d_2}(X) \subseteq \gamma_{d_1}(X) \]
- \[\phi_{d_1}(X) \subseteq \phi_{d_2}(X) \]

The families of operators \(\{\gamma_d \mid d \in \mathbb{N}\} \) and \(\{\phi_d \mid d \in \mathbb{N}\} \) are granulometries.
Investigate morphological operators acting on complexes:
- Dilations,
- Erosions,
- Openings,
- Closings,
- Granulometries…
Objective

Investigate morphological operators acting on complexes:
- Dilations,
- Erosions,
- Openings,
- Closings,
- Granulometries...

To achieve:
- “Smaller resolution”.
- Better filtering results on images/meshes.
Basic definitions

- **Simplex**: any nonempty set.
- **Dimension** of a simplex: $|x| - 1$.

Example of simplices $\{a\}$, $\{a, b\}$ and $\{a, b, c\}$:
Complexes and subcomplexes

Complex: Any set X such that, for any $x \in X$, all nonempty subsets of x also belongs to X.

\mathbb{C}: a nonempty complex, of dimension n.
Complexes and subcomplexes

Subcomplex: A subset Y of a complex X such that Y is also a complex.

\mathcal{C}: the set of all subcomplexes of \mathcal{C}.
Complexes and subcomplexes

Star: The complement of a subcomplex.

\[\mathcal{S}: \text{the set of all stars of } \mathcal{C}. \]
Lattices of interest:

The set \mathcal{C} is a lattice:

- Closed under union and intersection,
- Set inclusion as order relation.

The lattice \mathcal{C} is **not** complemented.
Lattices of interest:

The set \mathcal{C} is a lattice:

- Closed under union and intersection,
- Set inclusion as order relation.

The lattice \mathcal{C} is not complemented.

The set \mathcal{S} is a lattice:

- Closed under union and intersection,
- Set inclusion as order relation.

The lattice \mathcal{S} is not complemented.
Lattices of interest:

The set \mathcal{C} is a lattice:

- Closed under union and intersection,
- Set inclusion as order relation.

The lattice \mathcal{C} is **not** complemented.

The set \mathcal{S} is a lattice:

- Closed under union and intersection,
- Set inclusion as order relation.

The lattice \mathcal{S} is **not** complemented.

The set $\mathcal{P}(\mathcal{C}_i)$ is a lattice.

The lattice $\mathcal{P}(\mathcal{C}_i)$ is complemented.
Dimensional operators

<table>
<thead>
<tr>
<th>$\mathcal{P}(\mathbb{C}_i) \rightarrow \mathcal{P}(\mathbb{C}_j)$</th>
<th>$\mathcal{P}(\mathbb{C}_j) \rightarrow \mathcal{P}(\mathbb{C}_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{i,j}^+(X) = { x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x }$</td>
<td></td>
</tr>
</tbody>
</table>

(a) X

(b) $\delta_{0,1}^+(X)$
Dimensional operators

<table>
<thead>
<tr>
<th>(\mathcal{P}(\mathbb{C}_i) \to \mathcal{P}(\mathbb{C}_j))</th>
<th>(\mathcal{P}(\mathbb{C}_j) \to \mathcal{P}(\mathbb{C}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{i,j}^{-}(X) = { x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x })</td>
<td></td>
</tr>
</tbody>
</table>

\[
\delta_{i,j}^{-}(X) = \{ x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x \}
\]

(a) \(X \)
(b) \(\delta_{0,2}^{-}(X) \)
Dimensional operators

<table>
<thead>
<tr>
<th>$\mathcal{P}(\mathbb{C}_i) \rightarrow \mathcal{P}(\mathbb{C}_j)$</th>
<th>$\mathcal{P}(\mathbb{C}_j) \rightarrow \mathcal{P}(\mathbb{C}_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{i,j}^+(X) = {x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x}$</td>
<td>$\delta_{j,i}^-(X) = {x \in \mathbb{C}_i \mid \exists y \in X \text{ and } x \subseteq y}$</td>
</tr>
</tbody>
</table>

(a) X
(b) $\delta_{1,0}^-(X)$
Dimensional operators

\[\mathcal{P}(\mathbb{C}_i) \to \mathcal{P}(\mathbb{C}_j) \quad \mathcal{P}(\mathbb{C}_j) \to \mathcal{P}(\mathbb{C}_i) \]

\[
\begin{align*}
\delta^+_{i,j}(X) &= \{ x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x \} \\
\delta^-_{j,i}(X) &= \{ x \in \mathbb{C}_i \mid \exists y \in X \text{ and } x \subseteq y \}
\end{align*}
\]
Dimensional operators

<table>
<thead>
<tr>
<th>$\mathcal{P}(\mathbb{C}_i) \rightarrow \mathcal{P}(\mathbb{C}_j)$</th>
<th>$\mathcal{P}(\mathbb{C}_j) \rightarrow \mathcal{P}(\mathbb{C}_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^+_i,j(X) = {x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x}$</td>
<td>$\delta^-_j,i(X) = {x \in \mathbb{C}_i \mid \exists y \in X \text{ and } x \subseteq y}$</td>
</tr>
<tr>
<td>$\varepsilon^+_i,j(X) = {x \in \mathbb{C}_j \mid \forall y \in \mathbb{C}_i, \ y \subseteq x \implies y \in X}$</td>
<td></td>
</tr>
</tbody>
</table>

(a) X
(b) $\varepsilon^+_1,2(X)$
Dimensional operators

<table>
<thead>
<tr>
<th>$\mathcal{P}(\mathbb{C}_i) \to \mathcal{P}(\mathbb{C}_j)$</th>
<th>$\mathcal{P}(\mathbb{C}_j) \to \mathcal{P}(\mathbb{C}_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{i,j}^+(X) = { x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x }$</td>
<td>$\delta_{j,i}^-(X) = { x \in \mathbb{C}_i \mid \exists y \in X \text{ and } x \subseteq y }$</td>
</tr>
<tr>
<td>$\epsilon_{i,j}^+(X) = { x \in \mathbb{C}_j \mid \forall y \in \mathbb{C}_i, y \subseteq x \implies y \in X }$</td>
<td></td>
</tr>
</tbody>
</table>

(a) X

(b) $\varepsilon_{0,2}^+(X)$
Dimensional operators

<table>
<thead>
<tr>
<th>Dimensional operators</th>
<th>(\mathcal{P}(\mathcal{C}_i) \to \mathcal{P}(\mathcal{C}_j))</th>
<th>(\mathcal{P}(\mathcal{C}_j) \to \mathcal{P}(\mathcal{C}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{i,j}^+(X))</td>
<td>({ x \in \mathcal{C}_j \mid \exists y \in X \text{ and } y \subseteq x })</td>
<td>({ x \in \mathcal{C}_i \mid \exists y \in X \text{ and } x \subseteq y })</td>
</tr>
<tr>
<td>(\varepsilon_{i,j}^+(X))</td>
<td>({ x \in \mathcal{C}_j \mid \forall y \in \mathcal{C}_i, y \subseteq x \implies y \in X })</td>
<td>({ x \in \mathcal{C}_i \mid \forall y \in \mathcal{C}_j, x \subseteq y \implies y \in X })</td>
</tr>
</tbody>
</table>

\(\delta_{i,j}^+ \) and \(\delta_{j,i}^- \) are *decrease* operators, while \(\varepsilon_{i,j}^+ \) and \(\varepsilon_{j,i}^- \) are *increase* operators.

![Diagram](image-url)
Dimensional operators

<table>
<thead>
<tr>
<th>$\mathcal{P}(\mathbb{C}_i) \rightarrow \mathcal{P}(\mathbb{C}_j)$</th>
<th>$\mathcal{P}(\mathbb{C}_j) \rightarrow \mathcal{P}(\mathbb{C}_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{i,j}^+(X) = { x \in \mathbb{C}_j \mid \exists y \in X \text{ and } y \subseteq x }$</td>
<td>$\delta_{j,i}^-(X) = { x \in \mathbb{C}_i \mid \exists y \in X \text{ and } x \subseteq y }$</td>
</tr>
<tr>
<td>$\varepsilon_{i,j}^+(X) = { x \in \mathbb{C}_j \mid \forall y \in \mathbb{C}_i, y \subseteq x \implies y \in X }$</td>
<td>$\varepsilon_{j,i}^-(X) = { x \in \mathbb{C}_i \mid \forall y \in \mathbb{C}_j, x \subseteq y \implies y \in X }$</td>
</tr>
</tbody>
</table>

(a) X (b) $\varepsilon_{2,0}^-(X)$
Adjunction, duality

Theorem

- Pairs \((\varepsilon_{j,i}, \delta_{i,j}^+), (\varepsilon_{i,j}^+, \delta_{j,i}^-)\) are adjunctions acting between \(\mathcal{P}(\mathbb{C}_i)\) and \(\mathcal{P}(\mathbb{C}_j)\).
- Operators \(\delta_{i,j}^+\) and \(\varepsilon_{i,j}^+\) are dual w.r.t. the complement.
- Operators \(\delta_{j,i}^-\) and \(\varepsilon_{j,i}^-\) are dual w.r.t. the complement.
The *closure* and *star* operators

Closure: $\diamond : S \rightarrow C$

\[
\diamond(X) = \bigcup_{i \in [0...n], j \in [0...i]} \delta_{i,j}(X)
\]

(a) A star Y.
(b) $\diamond(Y)$.

Some morphological operators on complex spaces

Fabricio Dias, Jean Cousty, Laurent Najman

Introduction

Lattice of simplicial complexes

Morphological operators on simplicial complex spaces

Some results

Conclusion and future work
The closure and star operators

Star: \(\star : C \rightarrow S \)

\[
\star(X) = \bigcup_{i \in [0...n], j \in [0...i]} \delta^+_{j,i}(X)
\] (4)

(a) A complex \(X \).

(b) \(\star(X) \).
Morphological properties of ♦ and ★:

Dilations:

- Operator ♦ is a *dilation*, associating elements of S to C.
- Operator ★ is a *dilation*, associating elements of C to S.
Finding the adjoint erosion

Property:

\[
\forall X \in S, \quad \star^A(X) = \bigcup \{ Y \in C \mid \star(Y) \subseteq X \} \quad (5)
\]

\[
\forall X \in C, \quad \diamond^A(X) = \bigcup \{ Y \in S \mid \diamond(Y) \subseteq X \} \quad (6)
\]

Duality property:

\[
\forall X \in S, \quad \star^A(X) = \overline{\star(\overline{X})} \quad (7)
\]

\[
\forall X \in C, \quad \diamond^A(X) = \overline{\diamond(\overline{X})} \quad (8)
\]
Examples:

(a) A complex X.

(b) $\Diamond^A(X)$.
Examples:

(c) A star Y.

(d) $\star^A(Y)$.
Adjunctions acting on the same lattice

Operators acting on \mathcal{C}:

\[
\delta = \diamondsuit \circ \star \\
\varepsilon = \star^A \circ \diamond^A
\]

The pair (ε, δ) is an adjunction.

Closing on complexes

\[
\phi = \varepsilon \circ \delta
\]

(11)

Opening on complexes

\[
\gamma = \delta \circ \varepsilon
\]

(12)
Examples:

(a) A complex Y.
(b) $\phi(Y)$.

Some morphological operators on complex spaces
Fábio Dias, Jean Cousty, Laurent Najman

Introduction
Lattice of simplicial complexes
Morphological operators on simplicial complex spaces
Some results
Conclusion and future work

25/59
Examples:

(c) A complex Z.

(d) $\gamma(Z)$.
Dimensional filters on complexes

Dimensional opening:

\[\gamma_{d/(n+1)}(X) = \bigcup \left\{ \delta_{j,i}(X_j) \mid j \in [d, n], i \in [0, j] \right\} \] \hspace{1cm} (13)

Cells of \(X \) with dimension greater than or equal to \(d \).

(a) \(Z \)
(b) \(\gamma_{1/3}(Z) \)
Dimensional filters on complexes

Dimensional opening:

\[\gamma_{d/(n+1)}(X) = \bigcup \left\{ \delta_{j,i}(X_j) \mid j \in [d, n], i \in [0, j] \right\} \] \tag{13}

Cells of \(X \) with dimension greater than or equal to \(d \).
Dimensional filters on complexes

<table>
<thead>
<tr>
<th>Dimensional closing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_{d/(n+1)}(X) = X \cup \bigcup_{j \in [n-d, n]} \varepsilon^+{n-d,j}(X{n-d})) (14)</td>
</tr>
</tbody>
</table>

The set \(X \) and the cells of \(\mathbb{C} \) whose elements of dimension between 0 and \((n - d) \) belong to \(X \).
Dimensional closing:

\[\phi_{d/(n+1)}(X) = X \cup \left(\bigcup_{j \in [n-d,n]} \varepsilon_{n-d,j}^+(X_{n-d}) \right) \] \hspace{1cm} (14)

The set \(X \) and the cells of \(\mathbb{C} \) whose elements of dimension between 0 and \((n - d) \) belong to \(X \).
Extending γ and ϕ

We combine the previously defined filters:

\[
\Gamma_{k/(n+1)} = \delta^i \circ \gamma_{d/(n+1)} \circ \varepsilon^i
\]

\[
\Phi_{k/(n+1)} = \varepsilon^i \circ \phi_{d/(n+1)} \circ \delta^i
\]

where i and d denote respectively the quotient and the remainder of the integer division of k by $(n+1)$

Property:

The families $\{\Gamma_{k/(n+1)} \mid k \in \mathbb{N}\}$ and $\{\Phi_{k/(n+1)} \mid k \in \mathbb{N}\}$ are granulometric.
Alternate sequential filters

Definition:

\[
ASF_{k/(n+1)} = \begin{cases}
\text{identity} & \text{if } k = 0 \\
\Gamma_{k/n+1} \circ \Phi_{k/n+1} \circ ASF_{(k-1)/(n+1)} & \text{otherwise}
\end{cases}
\]
(17)
Illustration on meshes

(a) 3D mesh (b) Curvature map (c) Threshold

Data courtesy of the French Museum Center for Research.
Illustration on meshes

(d) Threshold (e) Dilation (f) Erosion
Illustration on meshes

Original \((ASF_{0/3}) \)
Illustration on meshes

$ASF_{1/3}$
Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction

Lattice of simplicial complexes

Morphological operators on simplicial complex spaces

Some results

Conclusion and future work

Illustration on meshes

$\text{ASF}_{2/3}$
Illustration on meshes

\(\text{ASF}_{3/3} \)
Illustration on meshes

\[\text{ASF}_{4/3} \]
Illustration on meshes

\[\text{ASF}_{5/3} \]
Some morphological operators on complex spaces

Fábio Dias, Jean Cousty, Laurent Najman

Introduction

Lattice of simplicial complexes

Morphological operators on simplicial complex spaces

Some results

Conclusion and future work

Illustration on meshes

$$ASF_{6/3}$$
Illustration on meshes

\[\text{ASF}_{7/3} \]
Illustration on meshes

$ASF_{8/3}$
Illustration on meshes
Applicative results
Applicative results

Noisy version \((ASF_{0/3})\)
Applicative results

$ASF_{1/3}$
Applicative results

$ASF_{2/3}$
Applicative results
Applicative results

\[\text{ASF}_{\frac{4}{3}} \]
Applicative results

\(ASF_{5/3}\)
Applicative results

ASF_{6/3}
Applicative results

\(\text{ASF}_{7/3} \)
Applicative results

$ASF_{8/3}$
Applicative results

$ASF_{9/3}$
Comparison of results

(a) ASF_2. $MSE = 16.14\%$

(b) ASF_6. Triple resolution. $MSE = 4.05\%$

(c) Graph $ASF_{4/2}$. $MSE = 6.88\%$

(d) $ASF_{6/3}$. $MSE = 2.57\%$
Adjuntions acting on the same lattice

Operators acting on S:

\[\Delta = \star \circ \diamond \]
\[\mathcal{E} = \diamond^A \circ \star^A \]

Opening $\gamma^s : S \to S$

$\gamma^s = \Delta \circ \mathcal{E}$

Closing $\phi^s : S \to S$

$\phi^s = \mathcal{E} \circ \Delta$
Conclusion and future work

It works!
Conclusion and future work

Investigate morphological operators acting on complexes:

- Dilations/Erosions,
- Openings/Closings,
- Granulometries...

To achieve:

- “Smaller resolution”.
- Better filtering results on images/meshes.
Future work:

- Investigation of more morphological operators that can be built based on our framework.
- The straightforward extension to weighted simplicial complexes.
Morphological properties of Cl and St:

Dilations:

- Operator Cl is a *dilation*, acting on the lattice $\mathcal{P}(C)$.
- Operator St is a *dilation*, acting on the lattice $\mathcal{P}(C)$.

Property:

\[
\forall X \in \mathcal{P}(C), \quad St^A(X) = \bigcup \{ Y \in \mathcal{P}(C) \mid St(Y) \subseteq X \}\tag{20}
\]

\[
\forall X \in \mathcal{P}(C), \quad Cl^A(X) = \bigcup \{ Y \in \mathcal{P}(C) \mid Cl(Y) \subseteq X \}\tag{21}
\]
Granulometries based on Cl and St

- **Idempotent**: The presented operators are idempotent.
- **Composing**: The operators St and St^A result stars, not complexes. If X is a subcomplex, $Cl(St(X))$ is a subcomplex, but the adjoint operator $St^A(Cl^A(X))$ is a star.
A confusing equivalence

\[\forall X \in \mathcal{P}(\mathbb{C}), \quad St^A(X) = \bigcup \{ Y \in \mathcal{P}(\mathbb{C}) \mid St(Y) \subseteq X \} \]

\[\forall X \in \mathcal{P}(\mathbb{C}), \quad Cl^A(X) = \bigcup \{ Y \in \mathcal{P}(\mathbb{C}) \mid Cl(Y) \subseteq X \} \]

\[\forall X \in \mathcal{S}, \quad \star^A(X) = \bigcup \{ Y \in \mathcal{C} \mid \star(Y) \subseteq X \} \]

\[\forall X \in \mathcal{C}, \quad \diamond^A(X) = \bigcup \{ Y \in \mathcal{S} \mid \diamond(Y) \subseteq X \} \]

The two following propositions hold true:

\[\forall X \in \mathcal{C}, \diamond^A(X) = St^A(X); \text{ and} \quad (22) \]

\[\forall Y \in \mathcal{S}, \star^A(Y) = Cl^A(Y). \quad (23) \]